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Abstract

This technote holds reports based on the first analyses of the Data Preview 1 (DP1)
data by the Science Unit for photometric redshifts. Although photometric redshifts
are not a official DP1 data product, the “Photo-z ScienceUnit” generated photo-𝑧 esti-
mates for every galaxy in DP1 using the availablemulti-band imaging on a best-effort
basis. This work included developing training and test datasets by matching DP1
data to high-quality reference redshifts obtained with spectroscopy, Grism data, and
multi-band photometry. The Science Unit used the RAIL software package to make
photometric redshift estimates using eight different algorithms, developed simple
scientific performance metrics, used those metrics to explore how the performance
of the algorithms varied with configuration changes, derivedmore optimized config-
urations of the algorithms and tested the performance of those configurations. This
work, the resulting data products and expected data distribution mechanism are all
described there.
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Initial studies of photometric redshifts with LSSTComCam
from DP1

1 Introduction

The Vera C. RubinObservatory’s Data Preview1 (DP1)marks an importantmilestone in prepar-
ing for the forthcoming Legacy Survey of Space and Time (LSST), offering a valuable oppor-
tunity to test and validate scientific tools and workflows on precursor imaging data (Vera C.
Rubin Observatory, RTN-095). Among the core scientific objectives of LSST is the estimation
of photometric redshifts (photo-𝑧s) for billions of galaxies, enabling extragalactic astrophysics
and cosmological analyses that rely on redshift estimates and distributions. Accordingly, the
Rubin project developed a roadmap to providing high-quality photo-𝑧s for the scientific com-
munity (Graham et al., DMTN-049).

Although photo-𝑧 are not a DP1 deliverable, the “Photo-z Science Unit” was asked to generate
photo-𝑧 estimates for every galaxy in DP1 using the available multi-band imaging on a best-
effort basis, laying the groundwork for future large-scale applications. This effort required
integrating realistic data processing with scalable machine learning techniques capable of de-
livering precise redshift predictions across varied galaxy populations.

To accomplish this task, we employed the RAIL (Redshift Assessment Infrastructure Layers)
software package, a flexible and modular platform designed for photo-𝑧 estimation and eval-
uation(The RAIL Team et al., 2025). Specifically, we used RAIL to train photo-𝑧 estimation algo-
rithms on high-quality redshift training sets cross-matched to the DP1 photometric catalog.

This note describes the resulting best-effort photo-𝑧 catalogs, which should be regarded as
extremely preliminary, and the tools used and the steps taken to generate those catalogs.
In addition, we describe relevant features of the DP1 photometric data, the spectroscopic
calibration datasets and the resulting photo-𝑧 catalogs. Additional details about data products
and data distribution are included as appendices.

We expect feedback from science users as they explore the data and discover issues that we
have not anticipated, and that we will incorporate that feedback in future work.
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2 Data

2.1 Rubin DP1

The Rubin Observatory’s Data Preview 1 (DP1) dataset is the first public release of Rubin ob-
servatory imaging data processed through the LSST Science Pipelines (Rubin Observatory Sci-
ence Pipelines Developers, PSTN-019), serving as a critical testbed for scientific and technical
validation ahead of full LSST operations. DP1 is based on observations from the LSST com-
missioning camera (LSSTComCam) and includes multi-band optical imaging in u, g, r, i, z and
y filters over several square degrees of sky. The dataset consists of processed images, source
catalogs, and associated metadata, all formatted using the Rubin Data Butler system (Jen-
ness et al., 2022) in the same way as full LSST data products. Although smaller in scale than
future LSST datasets, DP1 offers realistic photometric measurements, object detection, and
data structures, making it an invaluable resource for developing and testing algorithms for
tasks such as photo-𝑧 estimation, object classification, and data quality assessment.

Critially, the fields selected for ComCam observation included the Extended Chandra Deep
Field South (ECDFS), for which many high-quailty redshifts exist from other surveys.

2.1.1 Preparation of photometric object catalogs

The Rubin Data Management (Rubin DM) pipeline measures multiple types of object pho-
tometry, the first stage in creating a photo-𝑧 catalog was to determine which measured pho-
tometry we would use as inputs. In this note, we generally use the 1.0 arc-second Gaussian
Aperture fluxes and their associated errors, e. g. u_gaap1p0Flux and u_gaap1p0FluxErr. These
fluxes should provide good measures of consistent galaxy colors within the defined aperture,
ideal for photo-𝑧 estimation, though they may not necessarily reflect the colors of the overall
galaxy if there is a significant color gradient and the galaxy is larger than the 1.0 arc-second
aperture. This choice of photometric measurement may not be ideal, and investigation into
the optimized set of photometric inputs will continue into the future. The only exceptions
to this are that we used i_psfFlux in the initial broad data cuts, and that we briefly explored
several of the other fluxes as part of the initial validation of our photo-𝑧 analysis pipelines.

Preparing object catalog (NSF-DOE Vera C. Rubin Observatory, 2025) data for photo-𝑧 algo-
rithm training and estimation included five steps:
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1. Applying quality cuts to the object catalog. We developed selections for the training
and test datasets (match_xxx), and two additional selections for full DP1 catalogs: one
applicable for fields with observations in only four bands (gold_4_band), the other for
fields with observations in all six bands (gold). These selections are described below.

2. Converting fluxes in nJy to AB magnitudes (𝑚AB = −2.5 log10(𝑓𝜈/nJy) + 31.4)

3. De-reddening to account forGalactic dust. Weuse the SFDdustmaps(Schlafly& Finkbeiner,
2011).

4. Cross-matching objects with reference catalogs that include redshift information as de-
scribed in Sec. 2.2.

5. Shuffling and splitting the resulting catalog into “training” and “test” data sets.

The data selection criteria that we used were:

• match_prelim: first version of matching to high-quality redshift catalogs in the ECDFS
field, see Sec. 2.2.

• match_ecdfs: updated matching to high-quality redshift datalogs in the ECDFS field, see
Sec. 2.2.

• match_desi: matching to DESI redshift catalogs in the Rubin SV 38 7 field, see Sec. 2.2.2.

• gold: Detection in 'ugrizy' && i_psfFlux / i_psfFluxErr > 5 && ( g_extendedness >

0.5 || r_extendedness > 0.5).

• gold_4_band: Detection in 'griz' && i_psfFlux / i_psfFluxErr > 5 && ( g_extendedness

> 0.5 || r_extendedness > 0.5).

To create the “training” and “test” data sets, we followed steps 1–5, while for the larger unla-
beled data sets we followed steps 1–3. Specifically, for DP1, the ECDFS, “EDFS” and “Rubin SV
95 -25” fields have observation in 6 bands, and we applied the gold target selection. In Rubin
SV 38 7, DP1 only has observation in 4 bands (“griz”), therefore we applied the gold_4_band
target selection to that field.

All of these datasets are summarized in Tab. 1.

3
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Data set Selection Number of objects
DP1 None 2,299,757
ECDFS+EDFS+SV_95 gold 375,610
SV_38 gold_4_band 169,034
training_v1 match_prelim 7,000
test_v1 match_prelim 2,437
training_v2 match_ecdfs 4,803
test_v2 match_ecdfs 1,201
test_DESI match_desi 2,728

Table 1: Summary of the datasets used in this work. Note that to train models on four-
band photometry, we used the same training and test sets as for six-band photometry, but
configured the algorithms only to use the ’griz’ bands.

2.1.2 Data properties

We have developed tools to generate diagnostic plots of both the input object catalogs and
the photo-𝑧 estimates as part of our data analysis. Fig. 1 shows histograms of the AB magni-
tudes in 1.0 arc-second apertures of objects in the “test_v1” dataset, which includes an explicit
magnitude cut, 𝑚𝑖 < 26.0. Fig. 2 shows the correlation between magnitude and redshift for all
objects in the “test_v1” data set. Fig. 3 shows the “adjacent band colors”, i.e., 𝑢 − 𝑔, 𝑔 − 𝑟, 𝑟 − 𝑖,
𝑖 − 𝑧, 𝑧 − 𝑦 versus redshift for the same, with a series of SED templates (as used by template-
fitting algorithms, see Sec. 3.1) overlaid. Finally, Fig. 4 shows the color-color plots for the same
adjacent colors. In all cases, the 1.0 arc-second aperture magnitudes are used for plotting.

4
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Figure 1: 1.0 arc-second Gaussian Aperture (Gaap) magnitudes (in AB system) of objects in
each of the six Rubin filter bands in the “test_v1” dataset. These aperture magnitudes were
used as the inputs for the photo-𝑧 algorithms.
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Figure 2: 1.0 arc-second Gaussian Aperture (Gaap) i-band magnitude versus redshift for all
objects in the “test_v1” dataset.
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Figure 3: “Adjacent band colors”, i.e., 𝑢 − 𝑔, 𝑔 − 𝑟, 𝑟 − 𝑖, 𝑖 − 𝑧, 𝑧 − 𝑦, in 1.0 arc-second apertures
versus redshift for all objects in the “test_v1” dataset. Colored lines represent the expected
colors for the eight “CWWSB” SEDs described in Sec. 3.1, and should very roughly show the
predicted range of color evolution expected for our galaxy sample.
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Figure 4: Color-color plots for all objects in the “‘test_v1” dataset. Colored lines represent the
expected colors for the eight “CWWSB” SEDs described in Sec. 3.1, and should very roughly
show the predicted color evolution expected for our galaxy sample.
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2.2 Redshift reference sample

The photo-𝑧 estimation algorithms in RAIL require highly accurate and precise redshift esti-
mates cross-matched to the DP1 photometric catalog to provide labeled “training” data sets.
We created such datasets using data drawn frompublicly available catalogs in the ECDFS, com-
prising galaxies with known spectroscopic redshifts, grism redshifts, and high-quality photo-
𝑧’s from deepmulti-band imaging. These training sets enablemachine learningmodels within
RAIL to learn the mapping between galaxy colors and redshifts, enabling photo-𝑧 estimation
for every galaxy detected in DP1.

The reference data set used to train photo-𝑧 estimation algorithms can have an outsize impact
on the resulting photo-𝑧 estimates, particularly formachine learning basedmethods. Inmany
ways, the galaxies with known redshifts define the flux/color to distance relation by tracing
out the mapping from empirical magnitudes to redshift that the algorithms “learn”. As such,
the details of the construction of the reference sample is very important.  In an ideal case,
we would prefer to have a “representative” sample of redshifts, i. e. a fair sampling in terms
of the color and magnitude distribution for all galaxies; however, due to the practicalities of
spectrographs and expensive telescope time investment needed for deep spectroscopic cam-
paigns, wemust deal with incomplete training samples, particularly for faint and high redshift
objects. We must also determine which datasets contain “secure” redshifts that meet some
confidence threshold, and whether to include datasets from grism and many-band photo-𝑧
estimates that may contain a small fraction of incorrect redshift identifications. We continue
to refine our reference sample definition, and we may include or exclude additional samples
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Figure 5: Redshift reference sample in ECDFS. Left: Locations of DP1 galaxies cross-matched
to objects in each reference catalog (using color scheme from middle panel). Many of the
sets overlap in the densely-covered GOODS-S field. Middle: Redshift distribution of objects
in the reference catalogs. Right: Same as middle panel with a log scale on the y-axis.

9



Initial studies of photometric redshifts with LSSTComCam from DP1 | SITCOMTN-154 | Latest Revision 2025-07-11

as we investigate system performance, this note represents a current best effort, but the final
selection will likely evolve.  There are also some concerns of imprinted sample variance, as
the deep six-band data of DP1 is concentrated in the single ECDFS field. Future Rubin data
will cover multiple widely separated deep fields containing rich spectroscopic datasets, which
will mitigate these concerns, but they may be an issue for the current DP1 estimates.

2.2.1 ECDFS redshift datasets

We have compiled and used two redshift samples in the ECDFS, (a preliminary version and a
reference sample), consisting of spectroscopic-, grism-, andhigh-qualitymultibandphotometric-
redshifts (Fig. 5).

This reference sample is used to train machine learning photo-𝑧 estimators and evaluate
photo-𝑧 performance. The component redshift catalogs (described below) were combined
into a single reference catalog and their respective quality flags were homogenized by defin-
ing a redshift “confidence” (more on this below).

When combining the component redshift catalogs, sources within 0.75″ were identified as du-
plicates. For these sources only the highest quality redshift is kept, i.e. spectroscopic redshifts
are preferred over grism redshifts, which are preferred over photo-𝑧’s, and higher confidence
values are preferred for redshifts of the same type. The redshift reference catalog was then
cross-matched to the ComCam DP1 catalog using a radius of 0.75″.

Confidence, which takes values between 0.0 and 1.0, is loosely defined as the fractional prob-
ability that an individual redshift estimate is correct. Most of the spectroscopic sets provide
these estimates for their redshifts. For the few that don’t we assigned the confidence 0.95.
For the grism and multiband photo-𝑧 surveys, we set the confidence equal to 1 − 𝑓out, where
𝑓out is the reported outlier rate of these catalogs. To facilitate custom quality cuts, the catalog
contains flags indicating whether each redshift originates from spectroscopy (type == ''s''),
grism (''g''), or multiband photo-𝑧 (''p''), as well as confidence values. Note redshifts from
grism and photo-𝑧 surveys, however, have larger scatter and bias than spectroscopic surveys
(and possible incorrect redshifts if the redshift is based off of a single emission line), but these
metrics are not captured by the confidence parameter. If doing their own studies with custom
reference samples, we encourage readers to investigate the details of each component sur-
vey that comprise the reference catalog and apply their own quality cuts as suit their needs.
For example, if studying high-redshift galaxies, you might choose to include the multiband

10
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photo-𝑧’s, which increase the number of redshifts at 𝑧 > 2 by a factor of 3 (Fig. 6).

We applied conservative cuts for our fiducial analyses, specifically type == ''s'', confidence >=

0.95, SNR >= 10 in the 𝑖 band (using gaap1p0 fluxes). We then performed a random 80%/20%
train/test split on this catalog, resulting in a training set of 4803 redshifts and a test set of 1201
redshifts.
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Figure 6: Redshift distribution of the reference catalog by redshift type, denoted s = spec-
troscopic, g = grism, p = multiband photo-𝑧.

Thematch_prelim selection used in the “train_v1” and “test_v1” included all spectroscopic and
grism galaxies in the “match_ecfds” catalog, without applying any confidence cut, and only
required SNR >= 5 in the 𝑖 band (using psf fluxes). This selection also dropped all galaxies
with NaN magnitude in any of the six bands. We randomly selected 7,000 objects for the
“train_v1” and assigned the remaining 2,438 to the “test_v1” dataset. Although we used these
datasets extensively in V1 of this technote, we intend to update the note to use the “train_v2”
and “test_v2” as soon as possible, ideally in the first week of July, 2025.

2.2.2 DESI Data Release 1 spectroscopic redshift dataset

We also use data from the DESI Data Release (Collaboration et al., 2025) to act as an indepen-
dent validation data set as it overlaps the Rubin SV 38-7 (SV_38) field. The observations of
this field are centered on the Abell 360 galaxy cluster which is located at 𝑧 = 0.22 (Quintana
& Ramirez, 1995). We cross-matched the DESI Bright Galaxy Sample (BGS) (Hahn et al., 2023),

11
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Survey Type Confidence Matches Reference
2dFGRS s 1.00 3 Colless et al. (2001)

0.99 4
0.90∗ 1

2dflens s 1.00 1 Blake et al. (2016)
2MRS s 0.95 1 Huchra et al. (2012)
6dFGRS s 0.98 2 Jones et al. (2009)
3D-HST g 0.99 5 Momcheva et al. (2016)

0.95 277
ASTRODEEP s 1.00 4165 Merlin et al. (2021)

p 0.97 8212
ASTRODEEP-JWST s 1.00 594 Merlin et al. (2024)

p 0.92∗ 628
0.90∗ 455

CANDELS s 1.00 53 Kodra et al. (2023)
p 0.93∗ 6

JADES s 0.99 11 D’Eugenio et al. (2025)
0.95 34
0.90∗ 24

MOSDEF s 0.99 9 Kriek et al. (2015)
NED s 0.95 847 Helou et al. (1991)
OzDES s 0.99 897 Lidman et al. (2020)
PRIMUS g 0.92∗ 3653 Cool et al. (2013)

0.85∗ 1687
VANDELS s 1.00 196 Garilli et al. (2021)
VIMOS s 1.00 499 Balestra et al. (2010)

0.95 43
VUDS s 1.00 9 Tasca et al. (2017)

0.95 9
0.80∗ 3

VVDS s 1.00 101 Le Fèvre et al. (2005)
0.95 193

Total s 7699
g 5622
p 9301
all 22622

Table 2: Component surveys of the redshift reference sample. Redshift type is denoted
s = spectroscopic, g = grism, p =multiband photo-𝑧. Note for our fiducial analyses we applied
conservative cuts on this catalog. Specifically, type == ''s'', confidence >= 0.95, SNR >= 10
in the 𝑖 band (using gaap1p0 fluxes).
∗ Note: multiband photo-z redshifts and grism and spectroscopic redshifts with confidence
< 0.95 were not used in any training sets employed in this note.
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Emission Line Galaxy (ELG) (Raichoor et al., 2023), and Luminous Red Galaxy (LRG) (Zhou et al.,
2023) samples against the DP1 catalog using a radius of 0.5” producing 2728matches with 398
from the BGS sample, 1421 from ELG, and 909 from LRG. The area of overlap and the three
subsamples are shown in Fig. 7. This spans a redshift range of 0 to 1.6 and i-mag of 14 to 23.9
as shown in Fig. 8; the bump at 𝑧 ≈ 0.25 can be attributed to the cluster at the center of the
field.

Figure 7: Overlap between the SV_38 sample andDESI subsamples. In all plots, the small blue
dots are DP1 objects from LSSTComCam andwe overlay, from left to right, the BGS, LRG, and
ELG subsamples with points color-coded by redshift. Each sample probes a different redshift
range and is shown with the color bar to the right of each panel.

]ht]

Figure 8: Validation set on SV_38 from DESI BRG, ELG, and LRG samples. Left plot: the red-
shift distribution of the matched subsample with BGS in blue, ELG in orange, LRG in green,
and the total matched distribution in black. Right plot: i-band magnitude as measured by
LSSTComCam versus spectroscopic redshift for all DESI matches with subsamples shown us-
ing the same color scheme as left plot.
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If an object was included in multiple samples, when matching we restrict to the one with
the largest weight as calculated by DESI DR1. The SV_38 field was observed in g (44 visits), r
(55 visits), i (57 visits) and z (27 visits) bands restricting our validation to the 4 band models.
Furthermore, the incomplete overlap with the BGS sample limits our ability to validate on
redshifts below 𝑧 = 0.5.

3 Methodology

We used the RAIL as the core tool for training and applying photo-𝑧 estimation models. We
also used RAIL to evaluate the model performance through a suite of diagnostic metrics us-
ing photo-𝑧 point estimates, including redshift bias, scatter (e.g., normalized median absolute
deviation), and catastrophic outlier rate and tomake diagnostic plots of the algorithm’s perfor-
mance. Specifically, we used the methodology described below to evaluate all the algorithms
listed in Tab. 3.

As part of the Rubin photo-𝑧 roadmapprocess, KNN and BPZwere chosen as “testing algorithms”
from the shortlist of algorithms considered in (Graham et al., DMTN-049), the expectation is
that these will supported by project data management team for Data Preview 2, while the
others will be supported by the wider community, the RAIL development team and DESC col-
laboration.

Algorithm name Home package Reference
Project Supported Testing

BPZ rail-bpz Benítez (2000)
KNN rail-sklearn RAIL Paper

Community Supported
CMNN rail-cmnn Graham et al. (2018)
DNF rail-dnf De Vicente et al. (2016)
FlexZBoost rail-flexzboost Izbicki & Lee (2017)
GPz rail-gpz-v1 Almosallam et al. (2016)
LePHARE rail-lephare Arnouts et al. (1999)
TPZ rail-tpz Carrasco Kind & Brunner (2013)

Table 3: Summary of the pre-wrapped estimators/summarizers/classifiers used in this pa-
per and described detail in (The RAIL Team et al., 2025).

For each algorithm, we trained photo-𝑧 models using the reference datasets described in
Sec. 2.2. Specifically, we used the rail_project package (see 3.3 to run RAIL’s PzPipeline. The
pipeline consists of “Informing” or training the models on the “training” dataset, and using

14

https://github.com/LSSTDESC/rail_bpz
https://github.com/LSSTDESC/rail_sklearn
https://github.com/LSSTDESC/rail_cmnn
https://github.com/LSSTDESC/rail_dnf
https://github.com/LSSTDESC/rail_flexzboost
https://github.com/LSSTDESC/rail_gpz_v1
https://github.com/LSSTDESC/rail_lephare
https://github.com/LSSTDESC/rail_tpz
https://github.com/LSSTDESC/rail_pipelines/blob/main/src/rail/pipelines/estimation/pz_all.py


Initial studies of photometric redshifts with LSSTComCam from DP1 | SITCOMTN-154 | Latest Revision 2025-07-11

those models in “Estimation” and “Evaluation” stages on the reserved “test” dataset to eval-
uate the algorithm performance. We also used rail_project to run RAIL’s EstimatePipeline,
to perform the photometric redshift estimation on the unlabeled data sets for all of the algo-
rithms.

In this work we are only using the magnitudes in the six (or four) available Rubin bands as
inputs to the photometric estimation. We do not use other inputs, such as object size or mor-
phology, or photometry from other surveys. As stated in Sec. 2.1.2, we systematically use the
gaap1p0 version of the fluxes, as these are considered the most reliable for color estimation.

3.1 Template fitting based estimators

RAIL’s template-based fitting algorithms (Lephare and BPZ, see references in Tab. 3 for more
details) estimate photometric redshifts by comparing observed galaxy photometry to a set
of predefined theoretical or empirical galaxy templates. These templates represent a range
of galaxy spectral energy distributions (SEDs) that are meant to span the expected range of
galaxy types observed in the Universe. Synthetic model fluxes are computed by red-shifting
each SED to a set grid of values and convolving with the Rubin filter curves, which charac-
terizes the expected variation in observed colors with redshift. Our algorithms calculate the
chi-square/likelihood for each SED at each grid point by comparing the model fluxes in our
photometric bands to the observed fluxes and uncertainties. This process enables the algo-
rithm to determine the relative likelihood for each redshift for a given galaxy by identifying
the template that best matches its observed color signature. An optional empirical Bayesian
prior can also be applied to produce a posterior probability rather than a straight likelihood
if information on the expected distributions are available. The training phase for these algo-
rithms consist mostly of preparing pre-computed tables for the expected fluxes in each filter
band for each SED template.

Two sets of templates are included in the rail_base software package and used in this note:
the “CWWSB” templates that are the default templates used by rail_bpz and described in Coe
et al. (2006), consisting of eight total SEDs, one Elliptical template, two Spiral templates, and
five Irregular/Starburst template. In this note, these SEDs are used to compute synthetic col-
ors that we compare to the observational data in Figures 3 and 4, but are otherwise not used.
The second template set consists of those described in Ilbert et al. (2009), consisting of 31 syn-
thetic SEDs (including some that are “interpolated” between adjacent templates by taking the
mean of the two SEDs). These SEDs are included with rail_lephare as “COSMOS_mod.list”
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in the lephare-data package. These SEDs are used by both template codes rail_bpz and
rail_lephare. The 31 base SEDs contain no internal dust extinction, rail_lephare is config-
ured to include dust automatically, while rail_bpz required dust to be added explicitly, and
additional SED templates that include internal extinction added to the input SED list. LePhare
also includes a set of stellar and AGN SEDs, which are available in the lephare-data package.

3.2 Machine learning based estimators

RAIL’s machine learning algorithms (CMNN, DNF, FlexZBoost, GPZ, KNN, TPZ) are described in detail
in the publications listed in Tab. 3. In short these algorithms attempt to perform a regres-
sion analysis to estimate the redshift from the input photometric data. It is a well-known
limitation of machine learning algorithms that they exhibit biases when presented with non-
representative data, or are asked to extrapolate results outside region of their training data.

3.3 Analysis framework and bookkeeping software

The rail_projects software package within the RAIL ecosystem provides an essential frame-
work for managing and organizing large-scale photometric redshift estimation workflows. It
acts as a project management and book-keeping tool that helps users streamline their re-
search, especially when working with complex or large datasets, like those associated with
the Rubin DP1 data. The primary focus of rail_projects is to offer a systematic way to track
different stages of data processing, model training, evaluation, and results across multiple
experiments, ensuring that all tasks are well-documented and reproducible.

Additionally, rail_projects facilitates the management of large datasets by organizing data
into structured directories and providing interfaces for batch processing. It allows users to
scale up their work to handle not only large catalogs of objects but also multiple datasets
and redshift estimation tasks. The package ensures that datasets and models are kept in
sync across various stages, from raw input data to intermediate results to final outputs, and
makes it easier to systematically export data coherent products.

3.4 Data exploration and algorithm optimization

We explored dozens of different configuration settings, covering analysis choices such as
which flux measurements to use, the machine learning hyper-parameters, which sets of SED
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templates to use, among others. The dp1/dp1.yaml configuration file (see Sec. A.1) captures
the set of configurations that we tested and labels each set into an analysis “flavor” to facilitate
bookkeeping.

After examining the performance of the algorithms under different configurations, we settled
on a set of optimized parameters for each algorithm and on the gaap_1p0 fluxes to produce
the best-effort catalogs for DP1. These optimized configurations parameters are captured in
the dp1/dp1_v1.yaml configuration file.

3.5 Production of redshift catalogs

Weproduced photo-𝑧 catalogs in two different software frameworks, both to test the software
pipelines aswell as to facilitate using associated tools to distribute the resulting data products.

3.5.1 Catalogs in the rail_projects framework

We used rail_project to run RAIL’s EstimatePipeline, to perform the photometric redshift
estimation on the unlabeled data sets for all of the algorithms.

Specifically, weused rail_project to run all of the configuration flavors defined in thedp1/dp1.yaml
and dp1/dp1_v1.yaml configuration files. The resulting data products are internally available
as files at the USDF and NERSC as described in App. B.3. It is expected some of the products
will be distributed via other methods in the near future (see App. B.2 and App. B.4).

3.5.2 Catalogs in the Rubin data management framework

We also used the meas_pz and meas_pz_extensions software packages to create photo-𝑧 cata-
logs in the Rubin data management framework.

Specifically, we imported trained models produced in the rail_project into the DP1 data But-
ler and produced photo-𝑧 estimates for every object in DP1 for each algorithm.

We did this for the baseline analysis flavor, (consisting of “out-of-the-box” algorithms, with all
settings at default values) and the optimized 6band (dp1_optimze) flavor defined in dp1/dp1_v1.yaml.
The resulting data products are internally available via data Butlers at USDF and NERSC as de-
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scribed in App. B.1. As with the rail_projects created catalogs, it is expected some of the
products will be distributed via other methods in the near future (see App. B.2 and App. B.4).

4 Performance

We evaluated all the algorithms listed in Tab. 3 for both scientific and technical performance.

4.1 Redshift estimator performance

We primarily evaluated the performance using the “test_v1” catalog which consist of 2,437
galaxies randomly drawn from the cross-match between the DP1 object catalog in ECDFS with
the reference redshifts described in Sec. 2.2. Additionally, we cross matched the DP1 object
catalog in the SV_38 field with the DESI DR1 BGS, LRG and ELG galaxies as a secondary valida-
tion set (“test_DESI”).

Specifically, we ran the PzPipeline (Inform → Estimate → Evaluate) to train models for per-
object 𝑝(𝑧) estimation on the training data set, use those models to obtain photo-𝑧 estimates
for the test data set, and then evaluate the performance of the photometric point-estimate
of the redshift against the spectroscopic estimates.

For each algorithm, we produce a set of performance monitoring plots, described in Sec. A.6.
In Fig 9, we show examples of these performance monitoring plots for two algorithms: knn
and bpz for the 6-band models and using the mode for the specific point estimate. Fig. 10
shows the performance monitoring of knn and bpz when 4-bands are used. In the scattering
plot, the mean, standard deviation, 3𝜎 outliers and absolute outliers of

Δ𝑧 =
𝑧phot − 𝑧spec

1 + 𝑧spec
(1)

are shown in legend. We summarized these statistics in Table 4.

4.1.1 Redshift estimation quality flags

Applying a simple cut on the RMS of the 𝑝(𝑧) distribution can dramatically reduce the catas-
trophic outlier rate. In Fig. 11 we show how the efficiency and purity obtained on the test

18

https://github.com/LSSTDESC/rail_pipelines/blob/main/src/rail/pipelines/estimation/pz_all.py


Initial studies of photometric redshifts with LSSTComCam from DP1 | SITCOMTN-154 | Latest Revision 2025-07-11

Figure 9: Estimator performance on the “gold” (six-band’) dataset. Top row: photometric
point estimate of the redshift versus spectroscopic redshift for KNN (left) and bpz (right). Mid-
dle row: performance metrics, (width and bias of residual, and outlier rate) versus spectro-
scopic redshift. Bottom row, performance metrics versus i-band magnitude.
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Figure 10: Estimator performance on the “gold_4_band” (four-band’) dataset. Top row: pho-
tometric point estimate of the redshift versus spectroscopic redshift for KNN (left) and bpz
(right). Middle row: performance metrics, (width and bias of residual, and outlier rate) ver-
sus spectroscopic redshift. Bottom row, performance metrics versus i-band magnitude.
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Table 4: Performance metrics for photo-𝑧 algorithms using 6-band data, with 4-band results
shown in parentheses.

Algorithm Bias 𝜎 3𝜎 Outlier Rate Δ𝑧 > 0.2 Outlier Rate
FlexZBoost 0.000 (0.000) 0.0246 (0.0274) 0.215 (0.221) 0.113 (0.124)
kNN -0.002 (-0.000) 0.0301 (0.0285) 0.205 (0.245) 0.128(0.147)
CMNN 0.000 (-0.002) 0.0369 (0.0729) 0.227 (0.212) 0.160 (0.226)
DNF -0.002 (-0.001) 0.041 (0.0327) 0.189 (0.215) 0.138 (0.121)
TPZ -0.001 (-0.002) 0.050 (0.0524) 0.154 (0.156) 0.117 (0.127)
GPz 0.032 (0.018) 0.166 (0.106) 0.056 (0.110) 0.260 (0.198)
BPZ -0.018 (-0.015) 0.0425 (0.060) 0.198 (0.197) 0.146 (0.186)
LePhare -0.012 (-0.015) 0.0344 (0.0699) 0.207 (0.175) 0.139 (0.185)

sample varies with a single additional cut, 𝑥 in 𝜎𝑝(𝑧) < 𝑥. In Fig. 12 we show how applying a cut
at 𝜎𝑝(𝑧) < 0.15 improves the scatter of the photometric redshift point-estimate versus spectro-
scopic redshift distribution. As fainter objects and objects at higher redshift often have larger
𝑝(𝑧) RMS values, cuts on RMS will likely result in relative shifts in the magnitude and redshift
distribution depending on the cut value.

4.1.2 Validation in the SV_38 field

Wecross-matchedour photo-𝑧 estimateswith theDESI DR1 LSS galaxies (BGS, LRG, and ELG) in
the SV_38 field. This cross-matched catalog can serve as additional validation for our photo-𝑧
results. In Fig. 13, we show the median photometric redshift estimates versus the DESI spec-
troscopic redshifts all eight tested photo-𝑧 algorithms. Each panel corresponds to a different
algorithm, allowing us to visually assess the bias, scatter, and potential outlier behavior across
a wide redshift range. Overall, the agreement with DESI DR1 spectroscopic redshifts provides
a robust sanity check on the performance of our methods in the early LSST data regime.

4.2 Technical performance

Tab. 5 shows compute times and file sizes for both the training and estimation phases of
the analysis. The metrics from the training phase were taken from running the algorithm’s
“Inform” stages on USDF on the “training_v1” dataset of 7,000 objects. The metrics from
the estimation phase were taken from algorithm’s “Inform” stages on USDF on the “test_v1”
datasets of 2,437 objects.

We note that the technical performance requirements depend heavily on the scientific use
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Figure 11: Efficiency (top left) and “purity”, i.e., fraction of objects with 𝛿𝑧
1+𝑧spec

< 0.20) (top right)
versus quality cut, 𝑥 in 𝜎𝑝(𝑧) < 𝑥. Bottom, purity version efficiency with cut value shown by
the color scale. The red star shows the point for a cut value 𝜎𝑝(𝑧) < 0.15.
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Figure 12: Estimator performance for TPZwithout (left) and with (right) a quality cut of 𝜎𝑝(𝑧) <
0.15.
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Figure 13: Mode photometric redshift estimates versus DESI DR1 spectroscopic redshifts
for galaxies in the SV_38 cross-matched sample. Each panel shows results from a different
photo-𝑧 algorithm: FlexZBoost, kNN, CMNN, DNF, TPZ, GPz, BPZ, and LePhare (from left to
right, top to bottom). These comparisons provide an external validation of photo-𝑧 perfor-
mance using Large-Scale Structure spectroscopic redshifts samples DESI.
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Algorithm name Training Estimation
Time [s] Model Size [MB] Speed [ms / object] Data Size [b / object]

Project Supported
BPZ < 5 1 1.5-10 ∼ 2400
KNN 8 - 30 1 0.6-1.5 ∼ 240

Community Supported
CMNN < 5 1 2.4 54
DNF < 5 2 0.6 ∼ 2400
FlexZBoost 55 - 100 35 - 50 4-13 ∼ 2400
GPz 10 - 15 1 < 0.5 32
LePHARE 300 - 600 1 50 - 180 ∼ 2400
TPZ 5-20 7 - 300 7 - 120 ∼ 2400

Table 5: Algorithm compute times and files sizes. The algorithms were trained on 7000
objects and evaluated on 2,437 objects. The variations shown reflect the differences in pro-
cessing times with different sets of hyper-parameters.

case. For example, in supernova cosmology, the number of objects will be in the 100’s of
thousands, while for weak-lensing cosmology, it will be in the billions. Accordingly, these give
very different constraints on the required processing speed of the photo-𝑧 estimation. While
seconds per object is supportable for supernova cosmology, weak-lensing will require pro-
cessing times in the milliseconds (𝑚𝑠) per object range.

5 Limitations and Caveats

The photo-𝑧 estimates described in this note were done on a best-effort basis by members
of the “Photo-z Science Unit” and are not official Rubin data products. As such, the release of
the various DP1-related data products comes with a number of caveats.

• The size and depth of the training set seriously limits the robustness of the training past
a redshift of 𝑧 ≃ 1.5. See in particular Fig. 2.

• In general, photo-𝑧 algorithms do not perform well with objects with marginal detec-
tions or with non-detections in several bands. Simply put, the photometric uncertainties
in such objects often overwhelms the information that is present and the photometric
estimates are very uncertain. See Fig. 14 for an example of the PDF of such an object.
Similarly, see, Fig 15 as an illustration of how the accuracy of a photo-𝑧 point-estimate
degrades significantly for faint objects.
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• Taking points (1) and (2) together, we do not advise to use any of the providedDP1 photo-
𝑧 estimates without applying cuts on the detection significance or the width of the 𝑝(𝑧)
distribution, or both.

• While we did put some work into optimizing the performance of the various algorithms,
this was by no means comprehensive, and we urge caution in drawing any conclusions
about the relative merits of the algorithms.

• The training and test sets were drawn from the same set of spectroscopically matched
objects. As such, the training set is fairly representative of the test set. On the other
hand, the full DP1 catalog does not have any spectroscopic selections applied, so the
training and test sets will not be representative of the full DP1 data set.
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Figure 14: Example of a 𝑝(𝑧) distribution for a faint object is not detected in all bands. (In this
case the object was only significantly detected in ’g’ and ’r’ bands).

6 Summary and Conclusion

This note describes an initial calculation of photometric redshifts on the Rubin Data Preview 1
dataset using the tools and workflows developed specifically for this purpose by the Photo-z
Science Unit. These early results are very promising, we show that we can successfully match
Rubin data with spectroscopic samples in the ECDFS field with deep six-band Rubin coverage
to create a reference sample and run our software pipelines to generate a catalog of individual
object redshifts consisting of both point 1D redshift PDFs and point estimate redshifts. We
show results for eight photo-𝑧 algorithms using a reserve set of redshifts, and see that photo-
𝑧 performance is in-line with expectations both in terms of our redshift predictions and for
compute times. We also test our estimates against an independent set of redshifts from the
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Figure 15: Point-estimates versus spectroscopic redshifts for all galaxies in the reserved test
set with 𝑚𝑖 > 23.5, showing the degradation in estimation performance for faint objects.

SV_38 field with shallower coverage and imaging in only four of the six Rubin bands. We
describe available data products and anticipated methods to access them. Overall, this is a
very successful initial test of photo-𝑧 pipelines.

However, work will continue on several fronts to further optimize the performance of our red-
shift predictions. Asmentioned earlier in the note, the definition of the true redshift reference
sample used to train our algorithms has a large impact on results, being the “truth” used to
define the flux/color-to-redshift mapping that is inherent to photo-𝑧 estimation. We will work
to refine our reference sample definition, which objects to include/exclude based on quality
flags, explore the tradeoffs of including grism and many-band photo-𝑧 estimates with larger
redshift uncertainties in our training sample, and other such effects. Asmore andmore Rubin
data is taken, areal coverage is increasing, including coverage of additional deep calibration
fields with existing spec-z datasets. This will naturally improve photo-𝑧 performance. Expan-
sion of reference redshifts will also enable the development of improved object flagging for
identifying which redshifts are trustworthy and those which are likely to be incorrect.

We will also continue to examine the Rubin photometry and evaluate the performance of
multiple measurement algorithms. In this note we used Gaussian Aperture (Gaap) fluxes and
magnitudes, as they are expected to produce consistent colors. We will undertake a thorough
exploration of multiple flux measurements (e. g. cModel, Sersic, additional Gaap apertures)
to test which combinations lead to the best photo-𝑧 estimates, as well as combinations like
using multiple aperture magnitudes that may contain information on the galaxy light profile
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that could help to constrain redshift. As we are still in the engineering and testing phase of
the project, there is ongoing work to characterize system performance, and improved un-
derstanding of the system will likely lead to better photo-𝑧 performance. For example, there
may be some hints that u-band fluxes are overestimated and u-band uncertainties under-
estimated at faint magnitudes (see the high redshift u-g colors in Fig. 3 and figures in Vera
C. Rubin Observatory (RTN-095)). DP1 data was obtained using LSSTComCam, while future
data releases will use LSSTCam, and thus performance for DP2 and beyond may be shaped
by slight differences between the two instruments.

In this analysis, while there was some optimization of code-specific parameters for the indi-
vidual estimators, e. g. the number of neighbors used for KNN, the number of trees used for
TPZ, it was not comprehensive. In addition, the optimal values will likely change slightly as
we refine both our spectroscopic reference sample and our photometric inputs. A thorough
exploration of the code parameters will happen as we converge on our final photometric and
spectroscopic setup.

As stated in the introduction, we expect feedback from science users as they explore the data
and discover issues that we have not anticipated, and that we will incorporate that feedback
in future work.

Key takeaway: while very promising, these results are far from final, there is ongoing work to
optimize photo-𝑧 performance. We have plans in place and will continue to refine as new data
arrives, and these plans should lead to improved redshift performance.
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A Data products

In the course of this work, we generated several data products, including redshift estimates
and a variety of others that can be used to reproduce those estimates and to facilitate thor-
ough evaluation of the algorithm performance. These products include: configuration files
( Sec. A.1), ancillary inputs (Sec. A.2), trained models (Sec. A.3), redshift estimates (Sec. A.4),
summary statistics (Sec. A.5, and performance monitoring plots (Sec. A.6), all of which are es-
sential for understanding the quality of the photometric redshift estimates and for refining the
algorithms. Together, these data products provide a comprehensive framework for conduct-
ing, managing, and evaluating photometric redshift estimation workflows in Rubin DP1. They
ensure that the process is not only scientifically rigorous but also organized and reproducible,
enabling effective collaboration and ongoing refinement of photometric redshift techniques.
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A.1 Configuration files

The configuration files, collected in the GitHub rail_project_config repository, provide the
necessary parameters and settings to control the various stages of the redshift estimation
process, are a key element of rail_projects workflow. These files typically include specifi-
cations for the photometric bands used (e.g., g, r, i, z), the algorithm choices (e.g., template
fitting or machine learning methods), details about data pre-processing, such as feature nor-
malization and handling of missing data. These configuration files also specify the training
and validation dataset splits, hyper-parameters for machine learning models, and paths for
input/output data. These files are essential for ensuring reproducibility and for sharing the ex-
act settings used in different redshift estimation runs, enabling other researchers to replicate
or extend the analysis.

A.2 Ancillary input files

In addition to the configuration files, we require ancillary inputs such as the galaxy spectral
energy distribution (SED) templates and the filter throughputs. Galaxy SED templates are
collections of theoretical or observed spectra for galaxies at different redshifts and with dif-
ferent properties (e. g. , galaxy type, age, star formation history). These templates are used
by template-fitting algorithms to model the expected galaxy colors as a function of redshift,
allowing for the estimation of photometric redshifts by comparing observed colors to those
predicted by the templates. Two SED sets are employed in this note, they are each described
in Section 3.1.

The filter throughputs specify the characteristics of the fiducial observational filter transmis-
sion curves, and are used in Rubin DP1, including their corresponding central wavelengths.
These filter curves are employed in calculating the synthetic fluxes or magnitudes expected
from each of the SED templates used in template-fitting algorithms, and for matching obser-
vational data to predicted theoretical values, e. g. the predicted colors shown in Figure 3.

A.3 Estimator data models

After training, the trained models for each photometric redshift estimation algorithm are
stored as serialized files, either in Pickle (for Python-basedmodels) or YAML (for model config-
urations) format. These models encapsulate the learned relationships between photometric
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features (such as magnitudes and colors) and redshift values, allowing them to be applied
to new data for redshift estimation. These files store the final state of the model, including
the weights, biases, and other learned parameters for machine learning models. In the case
of template-fitting methods, the corresponding model files may include the template sets
and the fitting parameters. The Pickle or YAML format ensures that the models can be easily
loaded, applied to new datasets, and evaluated in future studies.

A.4 Redshift estimates stored as QP ensembles

The per-object redshift estimates generated by the photometric redshift algorithms are stored
in qp files. These files serve as containers for storing the redshift predictions for each object
in the dataset before any detailed statistical analysis or final reporting. In the qp files, each
galaxy’s redshift estimate is stored in a format that is compatible with the algorithm provid-
ing the estimate. Specifically, for each object we store distribution 𝑝(𝑧), which, depending on
the algorithm, maybe represent a posterior probability, a likelihood, a conditional likelihood,
or just a hunch as to redshift of the object in question. These qp files are designed to be
lightweight and easy to query, allowing users to quickly retrieve the redshift estimates for in-
dividual objects. The structure of qp files is optimized for efficient access and data retrieval,
making it easier for users to process and analyze large numbers of photometric redshift esti-
mates across large datasets like RubinDP1. Additional information, including usage examples,
about qp and qp files is available at https://qp.readthedocs.io/en/main/.

A.5 Per-Object Point Estimates

In addition to the raw redshift estimates, the qp files also store per-object point estimates in
the form of an ancillary table. These estimates include crucial information about the quality
and reliability of each photometric redshift estimate, such as the uncertainty in the redshift
prediction (e.g., the confidence interval or standard deviation or, the likelihood score (in the
case of probabilistic models). This table will eventually includes flags for identifying objects
with low-confidence estimates or those that may be outliers. These summary statistics are
important for evaluating the overall performance of the redshift estimation algorithms on
an object-by-object basis and are often used to filter out low-quality or problematic redshift
estimates before conducting larger statistical analyses.

We also generate meta catalog file that collects the Object ID, magnitude information, and
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point estimates. The point estimates are named by “{algorithm}_z_{point estimate name}”.
Here is a list of the point estimates and summary statistics that are stored for each algorithm
and the corresponding column names:

1. mean: is the per-object expectation of redshift given by the PDF.

2. median: is the 50% percentile of the PDF.

3. mode: is the redshift that yields maximum PDF evaluated on 301 grid points between
𝑧 = 0-3.

4. err68_lower(upper): is the 16th (84th) percentile of the per-galaxy PDF, which corre-
spond to the 1𝜎 confidence interval.

5. err95_lower(upper): is the 2.5th (97.5th) percentile of the per-galaxy PDF, which corre-
spond to the 2𝜎 confidence interval.

Fig. 16 shows an example of the 𝑝(𝑧) distribution, point-estimates and summary statistics for
a single object.

Yes.

A.6 Performance Monitoring Plots

Finally, we produced standardized performance monitoring plots as part of the photometric
redshift workflow. These plots provide visual representations of the model’s performance,
allowing users to assess how well the redshift estimates align with the true redshifts from the
spectroscopic training data. Common plots include:

• Input dataset characterization plots, as shown in Sec. 2.1.2.

• Scatter plots to visualize the relationship between the predicted and true redshifts, high-
lighting any systematic biases or non-linearities.

• Redshift comparison plots, e.g., the bias or width of the redshift residuals,
𝑧phot−𝑧spec

1+𝑧spec
, as

a function of redshift or object magnitude.
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Figure 16: Single object 𝑝(𝑧) estimate, showing both the PDF, and the CDF, as well as the
summary statistics described in the text.
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To robustly summarize the distribution of residuals while minimizing the influence of outliers,
we compute biweighted statistics following a two-step procedure. First, we apply an itera-
tive 3𝜎 clipping to the input array using scipy.stats.sigmaclip, repeating the clipping process
nclip times (default is 3). This removes extreme outliers before computing robust estima-
tors. We then calculate the biweight location and biweight scale of the clipped subset using
the astropy.stats functions, which yield robust analogs to the mean and standard deviation,
respectively.

In addition, we compute two outlier rates: the relative outlier rate, defined as the fraction of
values in the original sample that deviate from zero by more than 3× the biweight scale, and
the absolute outlier rate, defined as the fraction of values exceeding a fixed threshold set by
self.config.abs_out_thresh. This framework provides both robust central moments and a
diagnostic of extreme deviations in the full sample.

Examples of the two latter types of plots for the BPZ and KNN algorithms are shown in Sec. 4

B Data Distribution

To support both the Rubin community and the DESC, we will distribute these data products
in several different ways:

1. Via the Rubin Data Butler (see Sec. B.1).

2. Via the Photo-z Server (see Sec. B.2).

3. Directly as files at the USDF and NERSC (see Sec. B.3).

4. Via LSDB (see Sec. B.4)

In each of these distribution mechanisms there are a number of metadata that are used as
fields in defining specific data products. In particular:

• algo: specifies a particular photo-z estimation algorithm (see Tab. 3),

• selection: specifies a particular data selection (see Sec. 2.1.1),
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Dataset type Description
Collection: pretrained_models/pz/DP1/{selection}/{flavor}
pzModel_{algo} Estimator models (see A.3)
Collection: LSSTComCam/runs/DRP/DP1/pz/DM-51523/{selection}/{flavor}/{version}
pz_estimate_{algo} QP ensembles (see A.4)
pz_{algo}_config Configuration parameters (see A.1)
pz_{algo}_log Log files
pz_{algo}_metadata Processing metadata

Table 6: Photo-z related objects stored in the Rubin Data Butler. Note that {selection} de-
scribes the selection applied to the trained data set.

• flavor: specifies a particular set of configuration parameters,

• dataset: specifies a particular dataset (see Sec. 1).

• version: specifies a processing version (e.g., v1, v2).

B.1 Distribution via the Rubin Data Butler

Creation of photometric redshift estimates using RAIL in the Rubin DM framework and distri-
bution via the Rubin Data Butler is supported the meas_pz software package for DM supported
algorithms and by the meas_pz_extensions software package for the community-supported al-
gorithms described in this note.

For DP1, the following objects stored in the data butler at USDF and NERSC are listed in Tab. 6.

B.2 Distribution via the Photo-z Server

The Photo-z Server (or PZ Server) is a web-based service available for the LSST community
to create and host PZ-related lightweight data products. It relies on the infrastructure of the
Brazilian Independent Data Access Center and is developed and maintained by LIneA as part
of the Brazilian in-kind contribution program.

The PZ server is open to any LSST member with a valid RSP account without the need for an
extra local registry. Users can log into the system simply using the RSP credentials.

All data products described in this document will be hosted on the PZ Server, along with their
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respective metadata and documentation. There are two ways to access these data products:

B.2.1 From the PZ Server website

Data products are listed both on the ’Rubin PZ Data Products’ page (for official data products
released or recommended by LSST DM) and ’User-generated data products’ for data products
produced or uploaded by the LSST communitymembers. TheDP1 PZ data products described
in this document will be available in the first one.

B.2.2 Via the pzserver Python library

Similar to the RSP, the PZ Server provides an API interface that enables users to access data
through Python scripts from any location, provided they know the product name as registered
on the server.

If it is the first time using the library, it must be installed via pip in the terminal or in a notebook
cell: pip install pzserver

Then, the PzServer class opens the remote connection to the PZ Server database. An access
token is required for authentication. The token can be generated by users on the PZ Server
website (top right corner menu on the home page).

from pzserver import PzServer

pz_server = PzServer(token="<paste your access token here>")

To display the product metadata and download it to the local working directory (if not in a
Jupyter notebook, replace display for get):

pz_server.display_product_metadata(<product_id>)

pz_server.download_product(product_id, save_in=".")

Alternatively, it is possible to load a table directly into memory as a Pandas DataFrame or
Astropy Table. For instance, to load a training set:
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Object type Relative Path
Training data sets data/train/*.hdf5
Test data sets data/test/*.hdf5
In : pz/projects/dp1/pipelines
Pipeline configurations {pipeline}_{flavor}.yaml
In : pz/projects/dp1/data
Estimator models {selection}_{flavor}/model_inform_{algo}.pkl
QP ensembles (for test data) {selection}_{flavor}/output_estimate_{algo}.hdf5
QP ensembles (for other data) {selection}_{flavor}/{dataset}/output_estimate_{algo}.hdf5

Table 7: Photo-z related files in the rail_projects-managed shared project areas.

training_set = pz_server.get_product(<training_set_id>)

training_set.display_metadata()

A tutorial notebook with examples for all pzserver methods is available on the pzserver li-
brary’s repository on GitHub.

B.3 Distribution as files at USDF and NERSC

All of the test and training files, the outputs from runs used to optimize the model hyper-
paramters, as well as from the optimized models, the photo-z estimates for the entire DP1
dataset, are all available in rail_projects-managed shared project area at both NERSC and
USDF. These data products are listed in Tab. 7.

B.4 Distribution via LSDB

The Large Survey DataBase (LSDB) will host the DP1 data on the USDF and the Canadian IDAC
RSP. The DP1 data will be turned into Hierarchical Adaptive Tiling Scheme (HATS) format. LSDB
enables researchers to load large datasets with limitedmemory, and fast crossmatch to other
surveys like DESI DR1 and GAIA DR3.

The photo-z point estimates for DP1 in the ECDFS,EDFS,Rubin_SV_95_-25, andRubin_SV_38_7
will be served as a single tabular catalog in the LSDB. The location on the USDF for this catalog
is /sdf/data/rubin/shared/lsdb_commissioning/dp1_pz_hats.
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D Acronyms

Acronym Description
1D One-dimensional
3D Three-dimensional
AGN Active Galactic Nuclei
API Application Programming Interface
AST NSF Division of Astronomical Sciences
AURA Association of Universities for Research in Astronomy
CDF Cumulative Distribution Function
COSMOS Cosmic Evolution Survey
DE dark energy
DESC Dark Energy Science Collaboration
DESI Dark Energy Spectroscopic Instrument
DM Data Management
DMTN DM Technical Note
DP1 Data Preview 1
DP2 Data Preview 2
DR1 Data Release 1
DR3 Data Release 3
DRP Data Release Processing
ECDFS Extended Chandra Deep Field-South Survey
EDFS Euclid Deep Field South
ELG Emission-Line Galaxies
GOODS The Great Observatories Origins Deep Survey
HST Hubble Space Telescope
IDAC Independent Data Access Center
JWST James Webb Space Telescope (formerly known as NGST)
LRG Luminous Red Galaxies
LSS Large Scale Structure
LSST Legacy Survey of Space and Time (formerly Large Synoptic Survey Tele-

scope)
LSSTCam LSST Science Camera
LSSTComCam Rubin Commissioning Camera
MB MegaByte

40



Initial studies of photometric redshifts with LSSTComCam from DP1 | SITCOMTN-154 | Latest Revision 2025-07-11

NED NASA/IPAC Extragalactic Database
NERSC National Energy Research Scientific Computing Center
NSF National Science Foundation
PDF Portable Document Format
PSTN Project Science Technical Note
PZ photo-z
RMS Root-Mean-Square
RSP Rubin Science Platform
RTN Rubin Technical Note
SE System Engineering
SED Spectral Energy Distribution
SLAC SLAC National Accelerator Laboratory
SM Sparse Mode
SNR Signal to Noise Ratio
SV Science Validation
USDF United States Data Facility
YAML Yet Another Markup Language
photo-z photometric redshift
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